Rapid thermo-optical quality assessment of laser gain media
نویسندگان
چکیده
We describe a technique for the quick and simple assessment of doped optical materials for use as laser gain media. To demonstrate this technique, referred to as Rapid Thermo-Optical Assessment (RTOA), we analyze a set of ceramic and crystalline Yb:YAG samples. RTOA is based on Shack-Hartmann wavefront sensing and thermal lensing to evaluate the media’s thermal response, giving a relative overall quality assessment of the material. The technique is also broadly applicable to optical media considered for high power or thermal loading conditions, and useful for the refinement of fabrication methods. ©2015 Optical Society of America OCIS codes: (140.6810) Thermal effects; (140.3380) Laser materials; (350.6830) Thermal lensing; (350.5340) Photothermal effects. References and links 1. A. W. AlShaer, L. Li, and A. Mistry, “The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture,” Opt. Laser Technol. 64, 162–171 (2014). 2. G. Boulon, “Fifty years of advances in solid-state laser materials,” Opt. Mater. 34(3), 499–512 (2012). 3. Office of Naval Research, “All Systems Go: Navy's Laser Weapon Ready for Summer Deployment,” http://www.navy.mil/submit/display.asp?story_id=80172. 4. J. Sanghera, S. Bayya, G. Villalobos, W. Kim, J. Frantz, B. Shaw, B. Sadowski, R. Miklos, C. Baker, M. Hunt, I. Aggarwal, F. Kung, D. Reicher, S. Peplinski, A. Ogloza, P. Langston, C. Lamar, P. Varmette, M. Dubinskiy, and L. DeSandre, “Transparent ceramics for high-energy laser systems,” Opt. Mater. 33(3), 511–518 (2011). 5. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995). 6. A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices, W. A. Clarkson, N. Hodgson, and R. K. Shori, eds. (SPIE, 2009), pp. 71930D. 7. R. Gaume, Y. He, A. Markosyan, and R. L. Byer, “Effect of Si-induced defects on 1 μm absorption losses in laser-grade YAG ceramics,” J. Appl. Phys. 111(9), 093104 (2012). 8. F. Zhuang, B. Jungbluth, B. Gronloh, H. D. Hoffmann, and G. Zhang, “Dual-wavelength, continuous-wave Yb:YAG laser for high-resolution photothermal common-path interferometry,” Appl. Opt. 52(21), 5171–5177 (2013). 9. N. J. Dovichi and J. M. Harris, “Laser induced thermal lens effect for calorimetric trace analysis,” Anal. Chem. 51(6), 728–731 (1979). 10. S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004). 11. S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron. 40(9), 1235–1243 (2004). 12. C. Jacinto, A. A. Andrade, T. Catunda, S. M. Lima, and M. L. Baesso, “Thermal lens spectroscopy of Nd:YAG,” Appl. Phys. Lett. 86(3), 034104 (2005). 13. C. Jacinto, T. Catunda, D. Jaque, L. E. Bausá, and J. García-Solé, “Thermal lens and heat generation of Nd:YAG lasers operating at 1.064 and 1.34 μm,” Opt. Express 16(9), 6317–6323 (2008). 14. F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorge, A. Courjaud, E. Mottay, and P. Georges, “On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance,” Opt. Mater. Express 1(3), 489–502 (2011). #235182 $15.00 USD Received 2 Mar 2015; revised 7 May 2015; accepted 8 May 2015; published 19 May 2015 (C) 2015 OSA 1 Jun 2015 | Vol. 5, No. 6 | DOI:10.1364/OME.5.001389 | OPTICAL MATERIALS EXPRESS 1389 15. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymiumand chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3(1), 102–114 (1986). 16. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37(1), 135–144 (2001). 17. D. P. Devor, L. G. DeShazer, and R. C. Pastor, “Nd:YAG quantum efficiency and related radiative properties,” IEEE J. Quantum Electron. 25(8), 1863–1873 (1989). 18. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1-XYbXF2+X,” J. Phys: Condens. Mat. 16, 1501 (2004). 19. C. C. C. Willis, J. Bradford, L. Shah, and M. Richardson, “Measurement of Wavefront Distortions Resulting from Incidence of High-Power 2 μm Laser Light,” in Solid State and Diode Laser Technology Review (Directed Energy Professional Society, 2011). 20. C. C. C. Willis, J. D. Bradford, E. Maddox, L. Shah, and M. Richardson, “Thermo-optic quality assessment of doped optical ceramics,” in Solid State Lasers XXII: Technology and Devices (SPIE, 2013), pp. 85990. 21. A. Ikesue and Y. L. Aung, “Ceramic Laser Materials,” Nat. Photonics 2(12), 721–727 (2008). 22. K. A. Appiagyei, G. L. Messing, and J. Q. Dumm, “Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics,” Ceram. Int. 34(5), 1309–1313 (2008). 23. A. Ikesue, Y. L. Aung, T. Yoda, S. Nakayama, and T. Kamimura, “Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing,” Opt. Mater. 29(10), 1289–1294 (2007). 24. J. Zhang, L. An, M. Liu, S. Shimai, and S. Wang, “Sintering of Yb:Y2O3 transparent ceramics in hydrogen atmosphere,” J. Eur. Ceram. Soc. 29(2), 305–309 (2009). 25. J. Lu, K. Takaichi, T. Umematsu, A. Skirawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitami, and A. A. Kaminskii, “Yb:Y2O3 Ceramics–A Novel Solid-State Laser Material,” Jpn. J. Appl. Phys. 41(2), 1373–1375 (2002). 26. W. Zhang, T. Lu, N. Wei, B. Ma, F. Li, Z. Lu, and J. Qi, “Effect of annealing on the optical properties of Nd: YAG transparent ceramics,” Opt. Mater. 34(4), 685–690 (2012). 27. S. R. Rotman, C. Warde, H. L. Tuller, and J. Haggerty, “Defect‐property correlations in garnet crystals. V. Energy transfer in luminescent yttrium aluminum–yttrium iron garnet solid solutions,” J. Appl. Phys. 66(7), 3207–3210 (1989). 28. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992). 29. W. Koechner, Solid-State Laser Engineering (Springer, 2006). 30. W. F. Krupke, “Ytterbium solid-state lasers. The first decade,” IEEE J. Sel. Top. Quant. 6(6), 1287–1296 (2000). 31. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006). 32. G. Ranganath and S. Ramaseshan, “Photoelasticity in polycrystalline aggregates,” Pramana 1(2), 78–87 (1973).
منابع مشابه
Wavelength Beam Combining for Power and Brightness Scaling of Laser Systems
The ideal electric laser efficiently converts electrical power into optical power in the form of a beam that can propagate a long distance with minimal diffraction-limited spreading. Various laser applications require scaling to high power (kWs to MWs) while maintaining a diffrac-tion-limited beam; thus, many efforts have been directed toward that goal. The main impediment to this high-power sc...
متن کاملOptical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Nonlinear Refraction for Cw Laser Illumination
In this work, thermo-optical properties of gold nanoparticle colloids are studied using continuous wave (CW) laser irradiation at 532 nm. The nanoparticle colloids are fabricated by 18 ns pulsed laser ablation of pure gold plate in the distilled water. The formation of the nanoparticles has been evidenced by optical absorption spectra and transmission electron microscopy. The nonlinear optical ...
متن کاملTheoretical comparison analysis of long and short external cavity semiconductor laser
In this paper, considering optical feedback as an optical injection, and taking in to account round-trip time role in the external cavity, a standard small signal analysis is applied on laser rate equations. By considering the relaxation oscillation (f2) and external cavity frequencies (f) ratio for semiconductor laser, field amplitude response gain, optical phase and carrier number for long ex...
متن کاملرفتار نورشکستی بلور تیتانات باریم و کاربردهای آن در اندازه گیریهای اپتیکی در زمان واقعی
In this research we measure some of the optical parameters of Barium Titanate crystal (BaTiO3), such as signal beam gain, coupling constant (exponential gain coefficient), change in index refraction and photorefractive sensitivity, which are very significant for optical data storage. In all experiment, two- wave mixing configuration at 632.8 nm (He- Ne laser) were used. Experimental data f...
متن کاملThermo-optic locking of a semiconductor laser to a microcavity resonance.
We experimentally demonstrate thermo-optic locking of a semiconductor laser to an integrated toroidal optical microcavity. The lock is maintained for time periods exceeding twelve hours, without requiring any electronic control systems. Fast control is achieved by optical feedback induced by scattering centers within the microcavity, with thermal locking due to optical heating maintaining const...
متن کامل